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Numerical simulations of single-cell, two-dimensional, time-dependent thermal con- 
vection in a square cross-section of fluid-saturated porous material heated uniformly 
from below reveal a series of transitions between distinct oscillatory dynamical 
regimes. With increasing Rayleigh number R, the flow first evolves from steady-state 
behaviour into periodic motion with a single frequency f which depends on R approx- 
imately according to  f a RB; the transition Rayleigh number lies between about 380 
and 400. At a value of R between about 480 and 500 the flow transforms into a fluctuat- 
ing state characterized by two frequencies. Soon thereafter, for R between about 500 
and 520, it reverts back t o  single-frequency periodic behaviour with f approximately 
proportional to R3. The two frequencies in the narrow transition regime may be locked 
to a rational ratio, in which case the flow is periodic, or they may be commensurate, 
in which case the flow is quasi-periodic. The spectral characteristics of numerical 
realizations of unsteady convection and the occurrences of transitions therein are 
highly dependent on truncation level in Galerkin schemes or resolution in finite- 
difference approaches. 

1. Introduction 
Two-dimensional thermal convection in a fluid-saturated porous layer heated from 

below is known to become unsteady at  sufficiently large Rayleigh number R (Com- 
barnous & LeFur 1969; Caltagirone, Cloupeau & Combarnous 1971; Horne & O’Sulli- 
van 1974; Caltagirone 1974, 1975). However, the Rayleigh number &for the onset of 
this oscillatory behaviqur has not been well determined. For single-cell convection in 
a, square cross-section (the pattern of convection considered in this paper) Horne & 
O’Sullivan (1975) found R, 2: 280. Caltagirone (1975), on the other hand, reported 
R, = 384 & 5, while Schubert & Straus (1979) determined R, to  lie between 300 and 
320. Some effort has been made to characterize the nature of the time-dependent flow 
for R > 3,. Based on finite-difference calculations with a 17 x 17 mesh at  R = 375, 
500, 750 and 1000, Horne & O’Sullivan (1974, 1978) concluded that this oscillatory 
flow is characterized by a single frequency f which is proportional to R*. 

Here we report the results of a detailed study of how single-cell, two-dimensional, 
time-dependent thermal convection in a square cross-section of fluid-saturated porous 
material heated uniformly from below depends on Rayleigh number. We show that 
the properties of this unsteady convection are very sensitive to truncation in a Galerkin 
computation (see also Marcus 1981), or equivalently to resolution in a finite-difference 
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calculation. Our previous determination of R, using the Galerkin technique was not 
carried out with a sufficient number of terms. The present calculations, which retain 
an adequate number of terms in the Galerkin expansion, place R, between 380 and 
400, i.e. at R = 380 convection is steady while at R = 400 it is time-dependent. The 
character of oscillatory convection when R > R, is found to be more complicated than 
previously thought. In  view of recent experience with the development of sequential 
instabilities in unsteady Taylor-vortex flow (e.g. Fenstermacher, Swinney & Gollub 
1979) and time-dependent thermal convection (e.g. Gollub & Benson 1980), it is 
perhaps not surprising that we find transitions between distinct dynamical regimes in 
oscillatory porous-medium convection. For R > R, but less than a third transition 
Rayleigh number R,, we observe a regular oscillatory flow with a single frequency f 
approximately proportional to 223. Following Gollub & Benson (1980) we denote such 
a periodic oscillatory state as P. The transition Rayleigh number R, lies between about 
480 and 500. For R > R, but less than a fourth transition Rayleigh number R,, we 
find an unsteady regime with two basic frequencies. Gollub & Benson (1980) have 
labelled this a quasi-periodic QP, state if the frequencies are incommensurate or a 
periodic L-state if they are locked to a rational ratio. The transition Rayleigh number 
R4 lies between about 500 and 520, so that the QPz (or L) regime occurs in a small 
range of R. Finally, for R > R, the flow returns to a periodic P-behaviour distinct from 
the P-regime at  lower Rayleigh number. We have not carried out a sufficient number 
of calculations to  determine the Rayleigh-number dependence off unambiguously for 
these flows, but our results are consistent with f cc R8 for R, 5 R 5 650. Thus the 
approximate Rayleigh-number interval 480 to 520 represents a multiple-frequency 
transition region between two periodic states. The evolution with Rayleigh number 
of single-cell, two-dimensional thermal convection in a square cross-section of fluid- 
saturated porous material heated from below is given by the sequence S -+ P -+ &Pa 
(or L) + P, where S refers to steady state. Undoubtedly there are additional transitions. 
However, we have not observed any others for R between R, and 650. 

We first provide a brief description of the mathematical model, the Galerkin tech- 
nique, and the spectral analysis of the computed time-dependent flows. The results 
outlined above are then presented in detail. 

2. Description of the mathematical model 
Consider an infinitely long cylinder of fluid-saturated porous material with square 

cross-section. The bottom of the cylinder is a t  t = 0 and the top is at x = d ;  the vertical 
boundaries are at x = 0, d. The axis of the cylinder is parallel to the y-direction, and y 
extends from minus to plus infinity. The horizontal surfaces of the cylinder are 
isothermal, with To the temperature at  the top of the cylinder and To+ AT the tem- 
perature at the bottom (AT > 0). The vertical walls are insulating. Both the horizontal 
and vertical surfaces of the cylinder are impermeable. Only time-dependent, two- 
dimensional, unicellular motions that are parallel to the (x, 2)-plane will be treated. 
The governing equations and boundary conditions are (Straus 1974; Straus & Schubert 

v . u  = 0, (2.1) 
1979) 
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ae wAT 
x-+pcu.VO-- at d = k V V ,  

e = = o ( z  = 0, d ) ,  (2.4) 

(2.5) 
ae 
ax 

where u = (u, 0, w) is the Darcy velocity of the volumetric flow rate of fluid per unit 
area of the porous medium, p is the pressure in excess of hydrostatic, p is the density, 
a is the coefficient of thermal expansion of the fluid, g is the acceleration due to gravity, 
/I is the fluid viscosity, K is the permeability, x is the average heat capacity per unit 
volume of the fluid and solid matrix, c is the specific heat of the fluid, k is the average 
thermal conductivity of the fluid and matrix, and 0 is the temperature in excess of the 
motionless conduction profile 

- = u = O (X = 0, d ) ,  

(2.6) 

These equations assume the validity of the Boussinesq approximation and Darcy’s law. 

~ = T - T , - A T + A T ~ .  z 

We introduce dimensionless quantities according to 

PCd P d  ii = ( a , o , W )  = -u = - ( U , O , W ) ,  
k k 

In  terms of these dimensionless variables, the equations and boundary conditions 
become - 

v.ii = 0, (2.10) 

@+ii-RBi = 0, (2.11) 

g+ii.m = W + B V ,  (2.12) 
a7 

B = w = 0 (5  = 0, 1), (2.13) 

(2.14) 
a8 - 
- =  u = 0 
a5 (5 = 0, l ) ,  

where is the unit vector in the [-direction, and the Rayleigh number is defined by 

R = clgpaKdAT//Ik. (2.15) 

The two-dimensional continuity equation allows the introduction of a stream 

(2.16) 
function in the form 

where subscripts indicate differentiation. By substituting (2.16) into the curl of Darcy’s 
law (2.11) one obtains 

e = --v=$. (2.17) 

- 
4 = $656, w = -$g, 

1 -  
R 
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A single differential equation for q5 together with appropriate boundary conditions 
follows upon substituting (2.16) and (2.17) into (2.12)-(2.14): 

(2.18) 

$655 = $66 = 0 ( S  = 0,119 (2.19) 

fjCsr = Fq5< = 0 (6 = 0 , l ) .  (2.20) 

As in our previous investigations (Straus 1974; Straus & Schubert 1979, 1981; 
Schubert & Straus 1979) we use the Galerkin technique to solve for q5. The Fourier- 
series expansion for q5, 

a m .  

q5 = 2 &(T) sin nnccosjnt, 
n=l j = O  

(2.21) 

identically satisfies the boundary conditions (2.19) and (2.20). The substitution of 
(2.21) into (2.18) yields an infinite set of coupled, nonlinear, first-order ordinary 
differential equations for q 5 n r ( ~ ) .  These equations are truncated with n + j  < N ,  where 
N is a positive integer, and solved numerically. The results reported here were obtained 
with N = 14, 16 and 18. We will see that the spectral properties of the oscillatory flows 
and the occurrences of transitions between different dynamical regimes depend 
strongly on the level of truncation. As a consequence one must be very careful to 
establish that any general conclusions are validindependent of N .  For N = 14 there are 
105 a priori non-zero coefficients &; for N = 16 the number of modes is 136 and 
for N = 18 it is 17 1.  We employed the symmetry condition suggested by our previous 
calculations (Straus 1974; Schubert & Straus 1979), i.e. n + j  = a non-zero even 
integer, t o  reduce the number of non-zero coefficients to 56, 72 and 90, for N = 14, 
16 and 18 respectively. 

We will characterize the time dependence of the solutions by the variations which 
occur in the horizontally averaged upward heat flux q. The Nusselt number Nu is a 
dimensionless measure of q ;  it is given by 

(2.22) 

For a given R we calculate NU(?) and determine its spectral content by means of a 
fast-Fourier-transform algorithm. The Nusselt-number time series is computed for T 

large enough to identify accurately the frequencies of any peaks in the power spectrum. 
The computations were carried out by starting at  a value of R less than R, (the Ray- 
leigh number for the S + P transition) and determining Nu(T) for successively larger 
R. The coefficients q5nj at the end of a particular run were used to begin the calculation 
at  the next higher value of R. The value of R, depends on truncation level; for N = 10, 
R, lies between 300 and 320 (Schubert & Straus 1979), for N = 14 it is between 370 
and 380, and for N = 18 it is in the interval 380 to 400. 

Table 1 is a summary of basic information about each Nu(7) time series and the 
manner in which it was spectrally analysed. The total length of record refers to the 
total dimensionless time covered by the calculated Nu(7)  time series; this is usually 
much larger than the length of the record used in the spectral analysis. The part of the 
Nu(7)  data set that is spectrally analysed is always taken from the end of the time 
series in order to minimize the influence of any atypical initial transient behaviour. 
The Af is a measure of the uncertainty in the frequency identification of spectral peaks. 
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R 

380 
390 
400 
450 
470 
480 
490 
500 
510 
520 
530 
550 
600 
620 
630 
650 

450 
480 
500 
520 
550 
600 
650 

400 
450 
480 
500 
520 
550 
600 

Total length 
of record 

0.993 
0.496 
0.496 
0.614 
1.986 
1.986 
0.993 
3.475 
0.993 
0.993 
0.993 
0-993 
0-496 
0.496 
0.992 
1-488 

0.496 
1.484 
1-089 
0.990 
3.463 
0.495 
0.495 

0.264 
0.527 
1.580 
1.054 
0.527 
0.527 
0.790 

Length of Number of data 
record in points in 
spectral spectral 
analysis analysis 

N = 14 
0.310 6 000 
0.310 6 000 
0.496 9 600 
0.617 6 000 
0.982 19000 
0-992 19200 
0.496 9 600 
0.982 19000 
0.496 9 600 
0.496 9 600 
0.496 9 600 
0.496 9 600 
0.258 5 000 
0.258 6 000 
0.465 9 000 
0.465 9 000 

N = 16 
0.257 6 600 
0.267 6 500 
0.257 6 500 
0.257 6 500 
0.257 6 500 
0.257 6 500 
0-267 6 500 

N = 18 
0.203 6 600 
0.203 6 500 
0.203 6 500 
0.203 6 500 
0.203 6 500 
0-203 6 500 
0.203 6 500 

A7 

6.169 x lo-' 
5.169 x 
6.169 x 
1.0339 x lo-' 
6.169 x lo-' 
6.169 x lo-' 
6.169 x lo-' 
6.169 x 
6.169 x lo-' 
6.169 x 
6.169 x lo-' 
6.169 x lo-' 
6-169 x 
6.169 x lo-' 
6.169 x 
6.169 x lo-' 

3.958 x 
3.968 x lo-' 
3.958 x lo-' 
3.958 x 
3.958 x 
3.958 x 
3.958 x 

3.127 x lo-' 
3.127 x 
3.127 x lo-' 
3.127 x lo-' 
3,127 x lo-' 
3.127 x lo-' 
3.127 x lo-' 

Af 

3.2244 
3.2244 
2.0162 
1.9344 
1.0182 
1.0076 
2.0162 
1.0182 
2.0162 
2-0162 
2.0162 
2.0152 
3.8692 
3.8692 
2.1496 
2.1496 

3.887 
3.887 
3.887 
3.887 
3.887 
3.887 
3.887 

4.920 
4.920 
4.920 
4.920 
4.920 
4.920 
4.920 

TABLE 1. Summary of baaic information about each Nu(7) time series and its spectral analysis. 

3. Characteristics of time-dependent solutions 
Transition 1 onset of convection 

The critical Rayleigh number R, for the onset of convection in a square cross-section 
is 4n2 (Horton & Rogers 1945; Lapwood 1948). The ensuing two-dimensional motion 
is a steady S single-cell roll. In an infinitely long cylinder with a square cross-section, 
this flow is actually unstable to three-dimensional disturbances for R 2 200 (Straus 
1 974). Multicellular two-dimensional modes are also possible at sufficiently large 
Rayleigh number (Schubert & Straus 1979); for example, 2 rolls can occur within the 
square for R 2 z$+. We will not be concerned with either three-dimensional or two- 
dimensional multicellular convection. Instead, we limit ourselves to unicellular two- 
dimensional motion and how it evolves through distinct time-dependent regimes with 
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increasing Rayleigh number. In  the range of Rayleigh numbers considered here, 
multicellular two-dimensional convection is steady (Schubert & Straus 1979). 

Transition 2 : S +- P 
Unicellular convection in a square cross-section remains steady only for R smaller than 
a second transition Rayleigh number R,. For R > R, single-cell convection is time- 
dependent. The value of R, is difficult to determine precisely because of the long 
integration times required to confirm the eventual decay of a very-small-amplitude 
motion. In addition, R, is dependent on the truncation number N .  In an earlier study 
(Schubert & Straus 1979) we found steady convection at  R = 300 and unsteady flow 
at R = 320 with N = 10. For N = 12 we also found steady convection at  R = 300 and 
unsteady convection at R = 400. The present investigation makes clear that N = 10 
and 12 are inadequate to determine R,. With N = 14 we find that steady unicellular 
convection exists for R as large as 370; single-cell convection at R = 380 is time- 
dependent with extremely small amplitude at  this level of truncation. For N = 18 we 
calculate a steady solution at R = 380 and an unsteady one at  R = 400. Thus, our best 
estimate of R, is some value between 380 and 400. 

Spectral analyses of N u ( r )  for flows with R slightly in excess of R, are characterized 
by peaks at a single fundamental frequency f and its harmonics. Following Gollub & 
Benson (1980) we denote such a periodic state as P. Transition 2 is of the type S + P. 
As the Rayleigh number is increased we find that unicellular convection remains 
periodic for R c R,, a third transition Rayleigh number at which a bifurcation to a 
distinctly different time-dependent motion occurs. Figure 1 illustrates how the 
frequency of the fundamental spectral component increases with Rayleigh number 
for these periodic flows. A functional relationship of the form f K R* is a good fit to all 
the frequencies in the interval R, < R < R, independent of truncation number for 
N = 14, 16 and 18. The variance of the solutions undergoes a large increase with R 
near the onset of time-dependent convection, but it remains substantially constant 
throughout most of the interval R, to R, (figure 2). The higher harmonics of the 
fundamental frequency contribute relatively little to the total variance. The tirne- 
averaged Nusselt number Nu increases smoothly with R throughout this Rayleigh- 
number interval (figure 3). An example of a periodic state is shown by the regular 
oscillations of Nu(T) -Nuversus T for R = 480 and N = 18 in figure 4. The figure also 
shows the power spectrum of this time series; the peaks at  the fundamental frequency 
and its first three harmonics are clear. 

Transition 3: P + QPz (or L) 
The third transition in unicellular convection at R = R, marks a change from periodic 
motion with a single frequency to either quasi-periodic or periodic flow with two basic 
frequencies. An example of this more complicated time dependence is given by the 
Nu(T) - % timeseries a t  R = 500 and N = 18 shown in figure5. Clearly, more than one 
frequency is involved. The power spectrum, also shown in the figure, reveals that there 
are two fundamental frequencies fi and f,. Spectral peaks occur at  frequencies that are 
sums, differences and harmonics of fi and fa. In  the classification scheme of Gollub & 
Benson (1980), a quasi-periodic oscillatory state with two fundamental incommen- 
surate frequencies is denoted as QPz. If the two frequencies are in a rational ratio then 
the state is actually periodic, and is labelled L. The solution in figure 5 is either QP2 or 
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FIQURE 1. Dimensionless frequencies of peaks in the power spectra of Nu@). 0,  N = 14; A ,  
N = 16; 0, N = 18. A narrow multiple-frequency transition region centred at R = 600 
separates periodic regimes at lower and higher Rayleigh numbers. In the low-Rayleigh-number 
P-regimef m &; in the high-Rayleigh-number P-regimef is consistent withf a R). 

L; althoughf,/f, is approximately +, the frequency resolution of our power spectrum 
(see table 1) does not permit an unambiguous association offJfi with the ratio of the 
two integers. 

Quasi-periodic convection similar to that in figure 5 occurs over the Rayleigh- 
number range R, to R,, where the latter Rayleigh number marks still another transi- 
tion. All of the solutions in this Rayleigh-number interval have complex spectra with 
peaks at many frequencies. In  all cases, the frequencies of the spectral peaks can be 
obtained from sums, differences and harmonics of two fundamental frequencies. 
Independent of truncation number these solutions all appear to be characteristically 
QPa or, within the limitations of our spectral resolution, L. Transition 3 is of the type 
P --f &Pa (or L). We refer to the Rayleigh-number interval containing these solutions 
as a multiple-frequency transition region. This is because single-cell convection is 
periodic with a single frequency for R > R,, making the interval R, to R, a transition 
between distinct P-regimes. 

The values of R, and R, depend strongly on truncation number, but as shown by 
the shaded area in figure 1, the multiple-frequency transition region occurs between 
about R = 480 and R = 520. When N = 14, convection at R = 470 is of type P; it is 
&Pa (or L) at R = 480, 490, 500, 510 and 520, and P a t  R = 630. At N = 16, the 
solutions at  R = 500 and 520 are QPz (or L) and those at R = 480 and 550 are P. For 
N = 18, the states at  R = 480 and 520 are P, while the one at R = 500 is QPz (or L). 
Thus the QPa (or L) states occur in a narrow Rayleigh-number interval centred at 
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FIGURE 2. Variance of Nu(7) time series aa a function of Rayleigh number. Symbols have the 

same meaning aa in figure 1.  

R = 500. Based on these results we place R, between about 480 and 500, and R4 
between about 500 and 520. 

Some of the characteristic frequencies associated with the QP, (or L) solutions are 
plotted in figure 1.  The figure does not, however, record the frequencies of all the 
spectral peaks of these solutions. The mean Nusselt numbers Nu of the QP, (or L) 
states are given in figure 3, while the variances of the fluctuations in Nu are shown in 
figure 2. The transitions from P to QP, (or L) and QPz (or L) to P again are associated 
with a strong minimum in the variance of the Nu-oscillations. The location of the 
minimum along the R-axis, and the actual value of the minimum variance depend on 
truncation number N; however, a definite minimum is observed a t  all values of N .  
The minimum in the variance does not occur a t  a value of R within the multiple- 
frequency transition region. Even though the variance in Nu goes through a strong 
minimum, the time-averaged Nusselt number % increases steadily with R. 

Transition 4: OP, (or L) +P  
As discussed just above, unicellular convection returns to a periodic state with one 
basic frequency if R is increased above R,. An example of this is contained in figure 6 
which shows Nu(r) -%versus r and its power spectrum for R = 520 and N = 18. The 
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FIQURE 3. Time-averaged Nusselt number N u  aa a function of R.  Symbols are defined in 
figure 1. The dashed line represents N u  cc d. 

spectral peaks occur at  a basic frequency and its first three harmonics. The funda- 
mental frequencies in this second P-regime are shown as a function of Rayleigh 
number in figure 1 for R as large as 600 and N = 14, 16, 18. While these frequencies 
increase with R consistent with fa R), our computations do not extend over suffi- 
ciently large R to identify definitely the dependence off on Rayleigh number in this 
regime. At a given R, the determinations off for the different N show more scatter 
than they do in the periodic regime found at  lower R. This probably indicates that N 
should be larger than 18 to determine f (R) accurately in the second P-regime. Although 
our classification of the multiple-frequency transition region has not been precise 
(QP2 or L), figure 1 leaves no doubt that there are two distinct P-regimes separated 
by a relatively narrow (in R )  region of rapid adjustment. Figure 2 shows how the 
variance in the Nusselt-number fluctuations increases with R in the P-regime after 
attaining its transition-associated minimum value. Figure 3 shows the continued 
increase in% with R. The overall dependence of Nu on R is consistent with Nu cc Rt, 
but there are significant truncation-dependent departures of % from this relation. 

4. Concluding remarks 
The characteristics of time-dependent, single-cell, two dimensional convection in a 

square cross-section of porous material heated from below have been found to be 
strongly dependent on truncation number N .  While modest levels of truncation may 
suffice to determine horizontally averaged properties of steady convection (e.g. Nu), 
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Nondimensional time r 

significantly more terms need to be retained in the Galerkin expansion (even a t  com- 
parable Rayleigh numbers) to determine time-averaged and/or horizontally averaged 
properties (e.g. Nu(7) -Nu) and spectral characteristics (e.g. peak frequencies) of 
unsteady convection. This implies that much finer grids are required to calculate 
time-dependent convective flows than steady flows when using finite-difference 
methods. Marcus (1981) was led to similar conclusions in his study of spherical con- 
vection using the Galerkin approach. If truncation is too severe it is possible to miss 
transitions. An extreme example of this is provided by the solutions of the single-mode 

FIGURE 4. The time series Nu@) -Nu and its power spectrum at R = 480 and N = 18. This is 
a periodic flow whose power spectrum is characterized by a single frequency f and its harmonics 
2fiv 3f1, and 4f 1. 
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equations of convection (Toomre, Cough & Spiegel1977), which do not exhibit any of 
the known bifurcations to periodic or aperiodic states; these solutions are steady at all 
Rayleigh numbers. Over-truncation can also introduce transitions that do not really 
occur. At Rayleigh numbers slightly higher than those reported here, we have observed 
transitions with N = 14 that disappear when N is increased to 16 or 18 (for a dis- 
cussion of similar effects in spherical convection see Marcus 1981). It is clear, when 
studying transitions in time-dependent flows, that the utmost care must be taken to 
avoid the introduction of spurious bifurcations as a consequence of insufficient 
horizontal resolution. 

FIUTJRE 5. Same aa figure 4 for R = 500 and N = 18. There are two basic frequenciesf, and fa  
whose sums, differences and harmonics specify the frequencies of all spectral peaks. This ie a 
quasi-periodic PQs or periodic L flow. 
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Non-dimensional time T 

-2.65 "1' 

I I I I I ~ ~ V H - & - L I I I ~  
- 

0 5 17.0 1034.0 1551.0 

Frequency ((nondimensional time)-') 

FIUURE 0. Same aa figure 4 for R = 620 and N = 18. This is also a periodic flow with a single 
basic frequency and its harmonics. 

The sequence of time-dependent instabilities that we observed may have been 
influenced by the symmetry condition we imposed (see the discussion after (2.21)). It 
has been found that the imposition of a similar symmetry requirement inhibits the 
transition to chaos in three-dimensional Rayleigh-BBnard convection (McLaughlin & 
Orszag 1982). Although our computations were not carried to sufficiently high Ray- 
leigh number to attribute significance to the absence of an observed transition to 
chaos, the symmetry requirement may also modify the bifurcation sequence at  
Rayleigh numbers below that at  which chaos occurs. Certainly, it  would be worthwhile 
to repeat the study carried out here with the symmetry restriction removed. 
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